NOTES:
This information is provided for support purposes only. Each toolset referenced in this document must be used in a manner consistent with its terms of use.
Background

Microsoft Product Support has a large toolset for capturing additional information when trying to determine the root cause of a problem. With respect to our Open Protocols documentation, this document defines three additional methods of data collection that can help us determine the root cause of a problem. These methods are used in addition to providing a network capture of the issue.
These three methods are:

· Use our debugging tools for windows to collect a process memory dump (full or mini)

· Enable ETW tracing events

· Enable iDNA tracing
Below is detailed information on how to use the tools in each scenario and when it is useful to us.

Data collection methods

Use of debugging tools for Windows

Microsoft provides a standard debugger toolset that can be used to collect post-mortem debugging information. This tool is also part of the iDNA toolset which enables the replay of a codepath that leads to a problem or scenario to reproduce. In the context of protocols work, WinDbg is most useful to capture a process memory dump when an exception (first or second chance) occurs. The toolset can be downloaded here.
Once you have installed the toolset on the target host for which you want to capture debugging information, you will then need to find the process ID. You can do so by adding the process ID counter to Task Manager as follows:

Go to Start / Run and type TaskMgr.exe to launch Task Manager.

Once in Task Manager, select View / Select Columns as shown below.[image: image1.jpg]
Then select the PID (Process Identifier) column and the select Ok. This is shown below:
[image: image2.jpg]
This will allow you to see the process ID of the process you will capture a crash dump for. To create a crash dump, navigate to the debugging tools directory (selected at install time) and run the command adplus –crash –p <INSERT PROCESS ID>. This will set up the debugger to capture a full memory dump for both first and second chance exceptions. For information on the difference between first and second chance exceptions you can read more here. For more advanced types of debugging scenarios it might also be useful to consider usage of a tool on TechNet called Debug Diag. The details for that tool can be found here.
Typically, we are interested in catching an exception to understand why an interaction between Windows and a system looking to achieve interoperability is failing. For example, a domain trust is established between Windows Active Directory and a third party implementation. An administrator then opens up the Tool Active Directory Users & Computers and tries to browse users in the interoperable implementation. The tool crashes. By using Windbg and its toolset we can capture a process memory dump at the time the exception occurs to try and understand what led to the crash.
Applicable scenarios for interoperability

· Application on Windows Operating System is crashing
Enable iDNA tracing
iDNA Tracing is an extension of Windbg that allows you to monitor and capture activities performed by a process for post mortem recreation of the issue. It records the activity of the process so that it can be replayed offline. This allows the support team to avoid a live debugging scenario in order to reproduce and diagnose the problem. Once it is deemed this is the best course of action, Microsoft will provide you with a zip file containing the iDNA tracing toolset, along with start/stop scripts to capture the particular issue. We will also provide an upload site so that you can send us the information. This will be done on an as-needed basis.

Applicable scenarios for interoperability

· RPC calls failing to produce the expected results

· Server process is failing and crash dump does not lead to resolution of problem

Use of ETW Tracing events
ETW Tracing acts as a method for data collection. The output of data collection is a log file that Microsoft can use to gain more visibility into what the process is doing without the need for a checked or debug build of a .dll. More information on ETW and how it works can be found here on MSDN. ETW tracing requires the user to supply a known GUID(s), along with debugging level (more information can be found here on debugging levels) and several other parameters such as output directory. The operating system will then begin collecting trace information related to that logging level. The resulting .etl file can then be analyzed by Microsoft post-mortem to the problem that is being debugged.

ETW Tracing provides a means of collecting data using a standard toolset that ships with Windows. Using this toolset only to collect diagnostic data would not be considered reverse engineering. Tracelog.exe is a “collection only” tool and is not used in the analysis of collected data. Logman.exe is a tool that can be executed from the command line in Windows to determine the available ETW providers and their associated GUIDs. More information on Logman can be found here. When appropriate, a Microsoft support engineer will provide the command line parameters to enable trace logging for you to execute. In the tracelog example below the highlighted GUID corresponds to RDBSS.
[image: image3.jpg]
Here is a sample using Logman to get the available providers:
[image: image4.jpg]
Not all of these providers are useful to collect logging information. You will need to work with Microsoft Product Support to determine the correct logging parameters.

You will need to start the trace collection, execute a scenario that reproduces the issue and then stop the trace. The resulting .etl file should then be sent to Microsoft for analysis.
Here is an example of a typical command with tracelog.exe and logman.exe
tracelog -start LoggingInstanceName -guid SMB-Guids.txt -f OutPutLogFile.log -level 4 -flags 2
Perform the task to generate the desired behavior

tracelog – stop LoggingInstanceName

This example starts a trace log and passes in a file, SMB-Guids.txt, with a list of GUIDs for the event providers we want to log. The logging level is set to 4 for information and flags is set to 2 which is used to refine the amount of logged events.
The text file SMB-Guids.txt would look as follows (note that each GUID is listed on a separate line):
8fc7e81a-f733-42e0-9708-cfdae07ed969 MRxSmb

cddc01e2-fdce-479a-b8ee-3c87053fb55e Rdbss
logman.exe query providers
This will query for a full list of ETW providers available on the system.

Applicable scenarios for interoperability

· Diagnosing issues related to ADSI (many Active Directory tools use this as a data provider for querying the directory store)

· Security related issues (NTLM, NTLMv2, Kerberos, SPNegotiate)
Reference Information

Trace levels

	Trace Level
	Trace Constant
	Description

	NONE
	0
	Tracing is not on

	FATAL
	1
	Abnormal exit or termination

	ERROR
	2
	Severe errors that need logging

	WARNING
	3
	Warnings such as allocation failure

	INFORMATION
	4
	Includes non-error cases such as Entry-Exit

ETW Examples

Some examples of ETW tracing usage can be found here:
· Event Tracing in ADSI
· Security Account Manager (SAM)
Useful Reference Links

The following are some useful reference links:
· Disable signed or encrypted LDAP traffic
· Client, service, and program incompatibilities that may occur when you modify security settings and user rights assignments
· LDAP signing changes for Active Directory administrative tools in Windows 2000 Server Service Pack 4
ETW Related Blogs

Some additional blog links for more information on ETW can be found here:

· Under The Hood - Matt Pietrek
· New Tools for Event Management in Windows Vista
· FTP and ETW Tracing
· Mike Devlin – Tracelog info
	© 2008 Microsoft Corporation
	Page 1

